
RAT(1) General Commands Manual RAT(1)

NAME

rat — schedule self-mailing reminder

SYNOPSIS

rat [−Rv] [−r !|interval|next] [−m !|max|last] [−a !|delay|when] [−A archive]
[[%]when [event [reminders] [body . . .]]]

rat [−Rv] [−r !|interval|next] [−m !|max|last] [−a !|delay|when] [−A archive]
[event [[%]when [reminders] [body . . .]]]

DESCRIPTION

Ask s the user for:
• when something happens,
• what the occasion is,
• when they want to be reminded about it,
• additional data they want to remember verbatim,

in that order, then schedules it for deliver y via ratrun(8), which will conveniently mail them this in-
formation at decreasing intervals to the time of the event.

This data may be increment ally par tially satisfied via the arguments, instead.

when is in date −d format. If you specify it in a less-committal "next thursday"- or "tomor row
15:00"-style for mat, which would change on each scan, you may want to prefix it with a ‘%’ to save it
as a concrete time à la "2022-11-02T0 4:44+01:00" relative to now. The date and time of the event in a
human-readable for mat are alway s listed on the standard output stream.

event is used as a file name (but slashes are massaged out to underscores, and, if required, -when
and -%when are appended to prevent clashes) and is part of the Subject: in reminder mails.

reminders are only used if they start wit h a digit, other wise the argument is subsumed by the body.
In addition to the normal Reminders, each field may be a clock time (any date −d format, but clock
time pairs well with a clock when).

body arguments are pasted toget her with spaces.

Non-interactively (if the standard input stream is not a teletype), no input is read, so empty
reminders and body are assumed, and when and event are required.

If any options are specified, they engage rerat(8) for either scheduling a periodic reminder (−rm) or
archiving the event when it expires (−aA):

−r, in Reminders format, specifies the time between instances of the event and
−m limits how many times the event will fire overall, while
−a, in Reminders format, is the time after the event date after which it should be archived, and
−A sets the file to archive to under ~/.ratrun/old/.
−v sets verbose (you’ll be mailed when the event is re-scheduled or archived), and
−R just adds a blank "rerat:" line.

In all cases, ! overrides to default — no re-scheduling, no limit, or no archiving, respectively.
−A is a date(1) for mat string applied to the event date; the default is ".old".

The numeric options are used verbatim, if in the correct for mat; other wise:
−r may also be a date −d-for mat date, which becomes the second occurrence of the event,

from which the period is derived; if
−m is a date −d-for mat date, it’s the final ocurrence of the event, with the repeat count

rounded up (such that, in most cases, specifying just the day is suf ficient to get what you
want); if

−a is a date −d-for mat date, it’s the exact time to archive the event.

In addition to the date and time of the event, the recur rence and archival configuration is listed, if
rerat(8) will process this file after it expires — this also takes into account your current default con-
figuration: even if you didn’t specify any options, if all is set, the event will still be subjected to process-
ing, for example.

Reminders

St art wit h a digit, are decimal integers, and optionally end with a recursively-expanded multiplicative
suf fix:

mo = 4wk

ratr un 1c+latest June 5, 2024 1

RAT(1) General Commands Manual RAT(1)

wk = 7d

yr = 365d

d = 24h

h = 60m

m = 60
s = 1

in this order, i.e. 10h = 600m = 36000 (= 36000s).

They cor respond to the minimal time before the event, in seconds, to send a reminder — i.e. for re-
minders "3600 60 0" (equiv. "1h 1m 0"), a mail will be sent no sooner than an hour, a minute, and at
the time of the event.

SIGNAL S

SIGHUP, SIGINT, SIGQUIT, and SIGTERM are caught, and the in-prog ress event discarded.

ENVIRONMENT

RATRUN_REMINDERS System-wide default list of reminders. Over riden per-user with
.reminders and per-event with reminders.

RERAT_DEFAULT The default set of configuration words. Over riden per-user with .rerat and
per-event with "rerat:" lines.

CONFDIR Replaces "/etc/default" below.

FILES

/etc/default/ratrun Sourced at the top.

~/.ratrun/ Scheduled events go here.
~/.ratrun/old/ And the ones for which all reminders were sent end up here.
~/.ratrun/.reminders Over rides RATRUN_REMINDERS, if present. One field-split line.
~/.ratrun/.nevermind Never ask for per-event reminders if present.
~/.ratrun/.tz If present, value expor ted as TZ at the top, cf. tzset(3). One line.
~/.ratrun/.prefix Over rides the "ratrun:" subject prefix, if present. "�" and empty

are good candidates. One line.
~/.ratrun/.rerat Over rides RERAT_DEFAULT, if present, providing a default configura-

tion for all processed events. One field-split line.

EXAMPLES

$ rat 12:00 call-robert 1h\ 0 bring up sales for q4

Happens on Mon 31 Oct 2022 12:00:00 CET

or
$ rat 12:00 call-robert 11:00\ 12:00 bring up sales for q4

rat: reminders normalised to 1h 0

Happens on Mon 31 Oct 2022 12:00:00 CET

$ rat 18:30 ’meet henry in 201’ ’’

Happens on Mon 31 Oct 2022 18:30:00 CET

or
$ rat

Event date/time (start with % to canonicalise): 18:30

Happens on Mon 31 Oct 2022 18:30:00 CET

Event: meet henry in 201

Reminders (clock times OK; empty = default (%s)):

Enter body; ^D to finish

^D

$ rat 2022-12-12T23:11 1yr-uptime "$(date; uptime)"

Happens on Mon 12 Dec 2022 23:11:00 CET

Assuming a default reminder time of "30m", the first reminders from each of these will, respectively, pro-
duce the following messages:

Date: Mon, 31 Oct 2022 11:00:42 +0100

Subject: ratrun: in 1h / on 12:00: call-robert

ratr un 1c+latest June 5, 2024 2

RAT(1) General Commands Manual RAT(1)

bring up sales for q4

and
Date: Mon, 31 Oct 2022 18:00:21 +0100

Subject: ratrun: in 30m / on 18:30: meet henry in 201

and
Date: Mon, 12 Dec 2022 22:41:12 +0100

Subject: ratrun: in 30m / on 23:11 (2022-12-12T23:11): 1yr-uptime

Mon 31 Oct 21:00:54 CET 2022

21:00:54 up 322 days, 12:09, 4 users, load average: 1.28, 0.69, 0.52

To archive the call with Rober t af ter a mont h to the default (configured) archive file:
$ rat −a 1mo 12:00 call-robert 1h\ 0 bring up sales for q4

Happens on Mon 31 Oct 2022 12:00:00 CET

Will be archived in ~/.ratrun/old/.old on Mon 28 Nov 2022 12:00:00 CET

or, as the case may be wit h archive-name=.’%y-Q%q in ~/.ratrun/.rerat,
Will be archived in ~/.ratrun/old/.’22-Q4 on Mon 28 Nov 2022 12:00:00 CET

To instead make the meeting with Henr y weekly:
$ rat −r 1wk 18:30 ’meet henry in 201’ ’’

Happens on Mon 31 Oct 2022 18:30:00 CET

Will be re-scheduled ad infinitum;

next time: Mon 07 Nov 2022 18:30:00 CET

(in both cases, the options can be added to bot h invocations).

Schedule a daily reminder for two week s, st arting tomor row at 9pm:
$ rat −r 1d −m 14 ’%tomorrow 21:00’ chrzęść ’’

Happens on Sun 08 Jan 2023 21:00:00 CET

Will be re-scheduled 13 times; next time: Mon 09 Jan 2023 21:00:00 CET;

last time: Sat 21 Jan 2023 21:00:00 CET

or, equivalently:
$ rat −r ’2023-01-09 21:00’ −m 2023-01-21 ’2023-01-08 21:00’ chrzęść ’’

&c.

SEE ALSO

date(1), ratrun.ics(7), ratrun(8), rerat(8)

It is quite easy to schedule events "by hand", too: see ratrun(8), EXAMPLES.
It is also quite easy to manually make events periodic, or vice versa: see rerat(8), EXAMPLES.
iCalendar/VCALENDAR/.ics files can be dropped into ~/.ratrun/ and will work just as well.

�

ratr un 1c+latest June 5, 2024 3

RATRUN.ICS(7) Miscellaneous Infor mation Manual RATRUN.ICS(7)

NAME

ratrun.ics — iCalendar emulation for ratr un

SYNOPSIS

$ head −n1 ~/.ratrun/an-event[.ics]
BEGIN:VCALENDAR

DESCRIPTION

Inter net Calendar ing and Scheduling Core Object Specification (iCalendar), also commonly known by
its prescr ibed extension .ics and much less commonly as VCALENDAR, is ubiquitously used for that
pur pose, and primar ily distr ibuted as text/calendar par ts.

To that end, files in this for mat may be freely used as ratrun(8) events in ~/.ratrun/.

iCal is complicated and ratrun is not, so support is only emulated, by using
DTSTART as the event time (in the proper TZID time-zone),
SUMMARY in the Subject: header,
DESCRIPTION if any, as the notification mail body, and
TRIGGERs if any, to override the default reminders.

Naturally, there’s more to calendar entries, so a full path to the iCal file is appended as the mail footer.

FILES

/usr/share/zoneinfo/ TZIDs are validated to exist here before being used.

SEE ALSO

rat(1), rerat.ics(7) – its X-RATSTART keys are also understood, ratrun(8)

�

STANDARDS

RFC5545: https://www.r fc-editor.org/r fc/r fc5545

Unrelatedly, this emulator is expected to be compatible with most common commercial calendar front-
ends and probably all sane ones; it was tested against Microsof t Outlook (2019), Microsof t Teams,
aCalendar, Evolution (GNOME™), and Google Calendar™, with largely favourable results.

BUGS

Besides, of course, not actually parsing iCal, in no particular order:
• only single-event files produce favourable results; §3.6. Calendar Components, final para. states: "a

complex iCalendar object that is used to capture a complete snapshot of the contents of a calendar
is possible. More commonly, an iCalendar object will consist of just a single [...] calendar compo-
nent.", and most CUAs won’t even let you expor t more than one at a time (the one multi-event ob-
ject in the test cor pus (so far!) comes from a ticke t distr ibution system, and nothing is lost there),

• recur ring of events (RRULE) isn’t handled at all,
• positive and absolute VALARM TRIGGERs are ignored, all are assumed to be relative to
DTSTART,

• all other VALARM fields are ignored (this is a feature actually),
• iCal has an opulent system for specifying time-zones. We consider X-WR-TIMEZONE equivalent,
• §3.2.19. Time Zone Identifier, Note kindly recommends "Implementers may want to use the nam-

ing conventions defined in existing time zone specifications such as the public-domain TZ data-
base", and, indeed, non-Microsof t products largely do, if they don’t just spec a UTC time. To sup-
por t the rest, with decent hit-chance, these are tried, in order, wit h the first ext ant used:

1. the TZID itself,
2. the same with "St andard" removed, or
3. 2. or 1., but only the upper-case characters (reduced to acronym);

• printf(1) %b is used to expand \ escapes.

ratr un 1c+latest June 5, 2024 1

RERAT.ICS(7) Miscellaneous Infor mation Manual RERAT.ICS(7)

NAME

rerat.ics — (lack of) iCalendar emulation for rerat

SYNOPSIS

$ head −n1 ~/.ratrun/old/an-event[.ics]
BEGIN:VCALENDAR

DESCRIPTION

Contrar y to ratrun.ics(7), iCal RRULE is semantically too complex to be handled correctly in all
common cases. As such, no attempt to do so is made.

Since they don’t inter fere wit h the event for mat, nor mal "rerat:" specs can be appended to the event,
and work as expected.

To that end, an X-RATSTART key is appended to the event each time it gets re-scheduled. This func-
tions to bot h override the original DTSTART, as well as to provide an equivalent for reratted=.

The event remains impor table and, from the perspective of the iCal, unchanged.

FILES

/usr/share/zoneinfo/ TZIDs are validated to exist here before being used.

SEE ALSO

rat(1), ratrun.ics(7), ratrun(8), rerat(8)

�

STANDARDS

RFC5545: https://www.r fc-editor.org/r fc/r fc5545

The same emulator is used between rerat and ratrun, so the same compatibility is achieved for
bulk event parsing.

BUGS

See ratrun.ics(7).

ratr un 1c+latest June 5, 2024 1

RATRUN(8) System Manager’s Manual RATRUN(8)

NAME

ratrun — scheduled reminder poster

SYNOPSIS

/usr/libexec/ratrun [−n[n]] [−d date]
/usr/libexec/ratrun −a

DESCRIPTION

Sends reminders for Events in ~/.ratrun/, to the invoking user, then moves expired events to old.
With −n, doesn’t, and lists what would be sent to the standard output stream (incl. the bodies if −nn).
−d overrides when "now" is: this is most useful in consort wit h −n to ascer tain upcoming events.

With −a, runs rat for all configured users: those limited to RATRUN_GROUPS, plus the individually-
named RATRUN_USERS, who have a .ratrun director y in their home director y. Users are mailed
wit h a summar y of the errors for their run, if any.

No user-specified code is ever run, and no root mail is generated (unless, of course, root schedules a re-
minder): rat is essentially just a way for users to schedule (periodic) mail deliver y to themselves.

Events

Have a very simple for mat:
• the first line is the event date in date −d format,
• the second line is the per-event reminder override (optional, and taken as part of the body if it

doesn’t start wit h a digit),
• the remainder of the file is the event body, sent verbatim in the reminder.

An event is said to be expired if it doesn’t have any more Reminders lef t.

iCalendar/VCALENDAR/.ics files can be dropped in verbatim, too, cf. ratrun.ics(7).

Reminders

St art wit h a digit, are decimal integers, and optionally end with a recursively-expanded multiplicative
suf fix:

mo = 4wk

wk = 7d

yr = 365d

d = 24h

h = 60m

m = 60
s = 1

in this order, i.e. 10h = 600m = 36000 (= 36000s).

They cor respond to the minimal time before the event, in seconds, to send a reminder — i.e. for re-
minders "3600 60 0" (equiv. "1h 1m 0"), a mail will be sent no sooner than an hour, a minute, and at
the time of the event.

No tification for mat

For each reminder that expires, users will receive mail with a subject of
ratrun: in {latest-expired reminder} / at {HH:MM} ({raw event date}):

{event filename}
and body of the rest of the event. The reminder time is folded, in reverse, per the suffix table above; the
parent hetical is omitted if it’s the same as HH:MM (or H:MM), and the reminder – if the only one is 0.

Additionally, users may receive messages with a subject of
Errors for your ratrun at ...

from root. These are produced by −a runs, and contain the standard error and output streams from the
user’s run.

ENVIRONMENT

RATRUN_REMINDERS System-wide default list of reminders. Over riden per-user with
.reminders and per-event with the second line.

RATRUN_GROUPS If non-empty, in −a mode, only check .ratrun presence for the specified
groups. Field-split (white-space-delimited).

ratr un 1c+latest June 5, 2024 1

RATRUN(8) System Manager’s Manual RATRUN(8)

RATRUN_USERS If non-empty, in −a mode, only check .ratrun presence for the specified
users, or add them to the result from RATRUN_GROUPS. Field-split.

CONFDIR Replaces "/etc/default" below.

FILES

/etc/default/ratrun Sourced at the top.

~/.ratrun/ Cont ains Events. Director y/hidden/unreadable/empty files are ignored.
~/.ratrun/old/ Expired events are moved here. If one already existed, its new name is

appended with its date (first raw, then à la 2022-11-02T0 4:44+01:00).
~/.ratrun/.reminders Over rides user’s RATRUN_REMINDERS, if present. One field-split

line.
~/.ratrun/.tz If present, value expor ted as TZ per-user (cf. tzset(3)). One line.
~/.ratrun/.prefix Changes the user’s mail subject prefix from "ratrun:"; "�" and

empty are popular choices. One line.
~/.ratrun/.expcnt/ Cont ains counts for expired reminders for each event. Remove the file

cor responding to an event from this director y to re-send its latest re-
minder. Entr ies here wit h no corresponding events are auto-pr uned.

EXAMPLES

$ cat > .ratrun/call-robert

12:00

1h 0

bring up sales for q4

^D

$ echo 18:30 > .ratrun/’meet henry in 201’

$ { echo 2022-12-12T23:11; date; uptime; } > .ratrun/1yr-uptime

Assuming a default reminder time of "30m", the first reminders from each of these will, respectively, pro-
duce the following messages:

Date: Mon, 31 Oct 2022 11:00:42 +0100

Subject: ratrun: in 1h / on 12:00: call-robert

bring up sales for q4

and
Date: Mon, 31 Oct 2022 18:00:21 +0100

Subject: ratrun: in 30m / on 18:30: meet henry in 201

and
Date: Mon, 12 Dec 2022 22:41:12 +0100

Subject: ratrun: in 30m / on 23:11 (2022-12-12T23:11): 1yr-uptime

Mon 31 Oct 21:00:54 CET 2022

21:00:54 up 322 days, 12:09, 4 users, load average: 1.28, 0.69, 0.52

SEE ALSO

date(1), mail(1), rat(1) – interactive scheduling, ratrun.ics(7) – iCalendar emulation,
rerat(8) – event periodisation and archiving

It is safe to run multiple instances of rat for any given user at any given time, for example via system
and per-user crontab(5)s.

�

ratr un 1c+latest June 5, 2024 2

RERAT(8) System Manager’s Manual RERAT(8)

NAME

rerat — reminder rescheduler and archiver

SYNOPSIS

/usr/libexec/rerat [−n[n]] [−d date]
/usr/libexec/rerat −a

DESCRIPTION

Re-schedules expired ratrun(8) Events from ~/.ratrun/old/ back to ~/.ratrun/ or archives
them if they’re old enough. With −n, doesn’t, and lists what would be moved to the standard output
stream (incl. the precise edits if −nn). −d overrides when "now" is.

With −a, runs rat for all configured users: those limited to RATRUN_GROUPS, plus the individually-
named RATRUN_USERS, who have a .ratrun/old director y in their home director y. Users are
mailed with a summar y of the errors (alway s) and motions (if verbose) for their run, if any.

Events

Are scanned for lines in the for m (whitespace around the colon optional):
rerat : [word...]

from which field-split (white-space-delimited) configuration words are taken:
!|interval re-schedule the event for the event date + interval; ! – don’t re-sched-

ule;
max=!|max re-schedule the event no more than max times; ! – no limit (default);
reratted=count counter maintained by rat, count is incremented every time the event is

re-scheduled;
or iginal-time=... the original event’s date line (this skips the rest of the "rerat:" line);

archive=!|delay move the event to arch af ter the event date + delay; ! – don’t archive;
archive-name=arch the file to save this event to, relative to ~/.ratrun/old/; arch is for-

matted via date(1) with the event date; the default is ".old";

[!]verbose note the re-scheduling and archival of this event to the standard output
stream (sent to the user by mail in −a mode); ! – be quiet (default);

[!]all process all events (this is useful to enforce an archival policy for all events,
for example); ! – just those with "rerat:" branding (default).

interval and delay use the Reminders format, recounted below.

Re-scheduled events, naturally, aren’t archived.

Reminders

St art wit h a digit, are decimal integers, and optionally end with a recursively-expanded multiplicative
suf fix:

mo = 4wk

wk = 7d

yr = 365d

d = 24h

h = 60m

m = 60
s = 1

in this order, i.e. 10h = 600m = 36000 (= 36000s).

They cor respond to the minimal time before the event, in seconds, to send a reminder — i.e. for re-
minders "3600 60 0" (equiv. "1h 1m 0"), a mail will be sent no sooner than an hour, a minute, and at
the time of the event.

ENVIRONMENT

RERAT_DEFAULT The default set of configuration words. Over riden per-user with .rerat and per-
event with "rerat:" lines. [!]all is only meaningful when set here.

RATRUN_GROUPS If non-empty, in −a mode, only check .ratrun presence for the specified
groups. Field-split (white-space-delimited).

ratr un 1c+latest June 5, 2024 1

RERAT(8) System Manager’s Manual RERAT(8)

RATRUN_USERS If non-empty, in −a mode, only check .ratrun presence for the specified users,
or add them to the result from RATRUN_GROUPS. Field-split.

CONFDIR Replaces "/etc/default" below.

FILES

/etc/default/ratrun Sourced at the top.

~/.ratrun/old/ Scanned for expired Events produced by ratrun. Director y/hidden/un-
readable/empty files are ignored.

~/.ratrun/ Re-scheduled events are moved here. If one already existed, its new name
is appended with its date (à la 2022-11-02T0 4:44+01:00).

~/.ratrun/.rerat Over rides RERAT_DEFAULT per-user, if present, providing a default
configuration for all processed events. One field-split line.

~/.ratrun/.tz If present, value expor ted as TZ per-user (cf. tzset(3)). One line.

EXAMPLES

Make the meeting with Henr y weekly:
$ echo rerat :7d >> .ratrun/old/’meet henry in 201’

Schedule a daily reminder for two week s, st arting tomor row at 9pm:
$ printf ’%s\n’ ’2023-1-8 21:00’ ’rerat: 1d max=13’ > .ratrun/chrzęść

but abort it after a week:
$ echo rerat : ! >> .ratrun/chrzęść

$ tail −n2 .ratrun/chrzęść

rerat: 1d max=13 reratted=7 original-time=2023-1-8 21:00

rerat : !

St art archiving all events to ".{year}-Q{quarter}" (~/.ratrun/old/.2022-Q4, for example) after
a quar ter, except Rober t-related ones; archive Henr y-related ones to (".old") after a year:

$ tee −a .ratrun/∗ obert∗ .ratrun/old/∗ obert∗
rerat: archive=!

^D

$ tee −a .ratrun/∗ enry∗ .ratrun/old/∗ enry∗
rerat:archive=1yr archive-name=.old

^D

$ echo all archive=3mo archive-name=.%Y-Q%q > .ratrun/.rerat

(wit hout the all word, only the events already containing a "rerat:" line would be subject to archival).

SEE ALSO

date(1), mail(1), rat(1) – interactive scheduling, rerat.ics(7) – (lack of) iCalendar emulation,
ratrun(8) – reminding about events

It is safe to run multiple instances of rat for any given user at any given time, for example via system
and per-user crontab(5)s.

�

BUGS

Without all (or if archiving with pax/cpio; this is not the default), events in files with new -lines can-
not be handled correctly. They aren’t meaningful anyway, since mail subjects are single-line.

ratr un 1c+latest June 5, 2024 2

