N3359 (pl): stdarg.h wording. . .

stdarg.h, especially in C2x, is byzantine.
Modernising the language can alleviate this.

Hab, seb, rCs

N3359 (pl): stdarg.h wording. . .

stdarg.h, especially in C2x, is byzantine.
Modernising the language can alleviate this.

Haob, seb, rCs
Document #: 3359
Date: 2024-09-27
Revisions: N3285
Project: Programming Language C
Reply-to: Hab <nabijaczleweli @nabijaczleweli.xyz>

1. Casus belli

seb <@sebastian @jittr.click> had identified a series of inconsistencies both in the wording of stdarg.h in the
current draft C2X standard N3301 and in compilers’ interpretations thereof. These have been refined in subsequent
discussion, this paper presents a summary of diffs, along with rationales.

Comments on the previous revision of this paper echo the desire to standardise the nomenclature — the sub-
clause referred to the same concept ad lib as “varying arguments” and “unnamed arguments”, i.a. compound
nouns thereof — the concept of a “variadic functions” with “varying arguments” is defined and replaced greedily,

2. Proposed wording

2.1. 716.1 (<stdarg.h>, ...)

1 The header <stdarg.h> declares a type and defines five macros, for advancing through a list of
arguments whose number and types are not known to the called function when it is translated.
A function may be called with a variable number of arguments of varying types if its parameter
type list ends with an ellipsis.

replace with

1 The header <stdarg.h> declares a type and defines five macros and functions, for use with variadic
functions. Variadic functions accept a list of arguments whose number and types are not known to the
called function when it is translated.
A function is variadic if its parameter type list ends with an ellipsis. Its varying arguments are those whose
positions match or come after the ellipsis in the parameter list.

2.1.1. Rationale

As above, so below. Also, clearly note that some of these can be either, not just macros.

2.2. 716.1 (va_list)

4 The type declared is
va_list

which is a complete object type suitable for holding information needed by the macros va_start,
va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function
shall declare an object (generally referred to as ap in this subclause) having type va_1list. The object
ap may be passed as an argument to another function; if that function invokes the va_arg macro
with parameter ap, the representation of ap in the calling function is indeterminate and shall be
passed to the va_end macro prior to any further reference to ap.?*> Whether a byte copy of va_list
can be used in place of the original is implementation-defined.

-1-

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n3285.pdf
mailto:nabijaczleweli@nabijaczleweli.xyz
https://jittr.click/@sebastian
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n3301.pdf

Hao, seb, rCs N3359 (P1): STDARG.H WORDING. ..

Replace
I va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function
shall declare an object (generally referred to as ap in this subclause) having type va_list.
with
I va_arg, va_end, and va_copy to access the varying arguments. Objects of type va_list are gener-
ally referred to as ap in this subclause.

and replace
The object
ap may be passed as an argument to another function; if that function invokes the va_arg macro
with parameter ap, the representation of ap in the calling function is indeterminate and shall be
passed to the va_end macro prior to any further reference to ap.292)
with
If an ap object is passed as an argument to another function and that function invokes the va_arg macro
on ap then the representation of ap in the calling function is indeterminate and ap shall be passed to the
va_end macro before being passed to any other va_ ... macros.
2.2.1. Rationale
Beside updating the ancient-style wording (“if ... is desired, the function ... shall”), it hinted at a restrixion of
where va_1lists may be created. There are none such.
“reference to” is clarified to be w.r.t. the other va_... macros exclusively. It’s still a valid object, and it’s entirely

okay to take its address, for example.

2.3. 716.2

I 7.16.2 Variable argument list access macros
replace with

1 7.16.2 Varying argument access macros

2.3.1. Rationale

As above, so below.

24. 716.2.1

'l The va_start and va_arg macros described in this subclause shall be implemented as macros, not
functions. It is unspecified whether va_ copy and va_end are macros or identifiers declared with
external linkage. If a macro definition is suppressed to access an actual function, or a program
defines an external identifier with the same name, the behavior is undefined. Each invocation of
the va_start and va_copy macros shall be matched by a corresponding invocation of the va_end
macro in the same function.
Append:
I The va_1list argument given to every macro defined in this subclause shall be an lvalue of this type or
the result of array-to-pointer decay of such an Ivalue.
and append or add footnote:
I For conciseness only, this subclause refers to va_copy and va_end just as “macros”. This is to be under-
stood as a short-hand, not as constraining only one of the possible implementations.

2.4.1. Rationale

This codifies existing practice, since the macros modify ap, allthewhile it must be allowed to be passed to func-
tions, wherein va_1ist decays to a pointer if it’s an array type, verbatim.

Kinda odd that it says these can be macros or symbols but then it calls them macros, innit. If it said “the
va_end macro or symbol” then that would be worse though.

Hao, seb, rCs N3359 (P1): STDARG.H WORDING. ..

2.5. 716.2.2
83 The first invocation of the va_arg macro after that of the va_ start macro returns the value of the
first argument without an explicit parameter, which matches the position of the . . . in the parameter list.

Successive invocations return the values of the remaining arguments in succession.
replace
I3 first argument without an explicit parameter, which matches the position of the . . . in the parameter list.
with
B3 first varying argument.

2.5.1. Rationale

As above, so below. The definition is moved to 7.76.1 (and all other prose calls the ellipsis the ellipsis and not
. so that’s standardised there as well).

2.6. 7.16.2.4

'3 The va_end macro facilitates a normal return from the function whose variable argument list was
referred to by the expansion of the va_start macro, or the function containing the expansion of
the va_ copy macro, that initialized the va_1list ap. The va_end macro may modify ap so that it
is no longer usable (without being reinitialized by the va_start or va_copy macro). If there is no
corresponding invocation of the va_start or va_copy macro, or if theva_end macro is not invoked
before the return, the behavior is undefined.
replace
from the function whose variable argument list was
referred to by the expansion of the va_start macro, or the function containing the expansion of
the va_ copy macro, that initialized the va_1list ap.
with
from the variadic function whose varying arguments were referred to by the expansion of the va_start
macro, or the function containing the expansion of the va_ copy macro, that initialized ap.

2.6.1. Rationale

As above, so below. Also, nothing else fully-specifies “the va_list ap” since we define that that’s what is
meant generally, so flatten that out.

2.7. 716.2.5 (va_start)

2 The va_start macro shall be invoked before any access to the unnamed arguments.
replace with
b The va_start macro may only be invoked in the block scope of a variadic function.

2.7.1. Rationale

There is no other way to access the varying arguments (pt. 3 defines the way va_start facilitates this) anyway,
so this can be deleted.

Currently, the way this limits where the standard allows va_start to be invoked is strictly by domain error of
the counterfactual (if there are no varying arguments). Can you use va_start if there is an ellipsis but no vary-
ing arguments were given? Yes. Does the current wording allow it? No, for the same reason.

Even then, this allows

void f(va_list ap, int [(va_start(ap), 1)], ...) { va_end(ap); }

which makes little sense, and yet GCC permits it, while Clang refuses it (va_start’ cannot be used
outside a function). This limits va_start to the scopes where it’s meaningful.

Hao, seb, rCs N3359 (P1): STDARG.H WORDING. ..

2.8. 7.16.2.5 (examples)

%9 EXAMPLE 2 The function £3 is similar, but saves the status of the variable argument list after the indicated
number of arguments; after £2 has been called once with the whole list, the trailing part of the list is gathered
again and passed to function £4.

EXAMPLE 3 The function £5 is similar to £1, but instead of passing an explicit number of strings as the first
argument, the argument list is terminated with a null pointer.
replace
but saves the status of the variable argument list after the indicated
number of arguments; after £2 has been called once with the whole list, the trailing part of the list is gathered
the argument list is terminated with a null pointer.
with
but saves the position in the varying arguments after the indicated
number of arguments; after £2 has been called once with all arguments, the trailing arguments are gathered
varying arguments are terminated with a null pointer.

2.8.1. Rationale

As above, so below.

3. References

The seminal post: https://jittr.click/ @sebastian/statuses/O0lHY Y TSHPDNAFDNQSTXVXYSAY2
Joseph Myers’ Pre-DR#S8: va_list objects (as additional rationale for this paper’s 2.4 diff 1): https://www.poly-
omino.org.uk/computer/c/pre-dr-8.txt

4. Notes

All comments for N3285 were applied, with the exception of replacing “being passed to any other va_... macros”
with “referenced again”. The rationale in 2.2.7 was expanded to further justify this change.

https://jittr.click/@sebastian/statuses/01HYYTSHPDNAFDNQSTXVXYSAY2
https://www.polyomino.org.uk/computer/c/pre-dr-8.txt
https://www.polyomino.org.uk/computer/c/pre-dr-8.txt

Contents

LoCasus DLl . . .v ettt e e e
2. Proposed WOTdINGottt e e e

2.1. 716.1 (<stdarg.h>, ...)
210, Rationale

2.2, 7161 (Wa_Last) ..o
22010 Rationale e,

2. 3. 0.2 e
2300 Rationale e e
2.4, TAO.2.1 o e
2,400 RaAtiONAlet e
2. 5. 0.2, e
2.5.1. Rationaleot
2.0, 710.2.4 o
2.6.1. Rationale e
2.7 716.2.5 (Wa_Start) ...
2700 RAtiONAlE .. .ot

2.8, TA6.2.5 (examples)
2.8.01. Rationale e

	Title Page: N3359 (p1): stdarg.h wording...
	N3359 (p1): stdarg.h wording...
	1. Casus belli
	2. Proposed wording
	2.1. 7.16.1 (<stdarg.h>, ...)
	2.1.1. Rationale

	2.2. 7.16.1 (va_list)
	2.2.1. Rationale

	2.3. 7.16.2
	2.3.1. Rationale

	2.4. 7.16.2.1
	2.4.1. Rationale

	2.5. 7.16.2.2
	2.5.1. Rationale

	2.6. 7.16.2.4
	2.6.1. Rationale

	2.7. 7.16.2.5 (va_start)
	2.7.1. Rationale

	2.8. 7.16.2.5 (examples)
	2.8.1. Rationale

	3. References
	4. Notes

	Contents

